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Spectral Shaping Without Subcarriers
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For proper operation of the phase lock loop which tracks a carrier, it is important to
minimize the spectral energy at frequencies near the carrier. A traditional method is to
modulate the data onto a subcarrier in such a way that there is little energy near DC. The
resulting signal is then used to modulate the carrier. The problem with such a scheme is
that the total bandwidth is much larger than necessary to transmit the data. This paper
proposes and analyzes a simpler scheme that increases the data bandwidth by a very small
Jraction, yet reduces the energy near DC to nearly zero.

l. Introduction and the power in Y is

We will do our analysis at baseband and begin with a

statistic which will allow us to estimate the energy of a process E {Y2 )} = f S (r)df = f S o) [Slﬂ (nf T)] df
between the frequencies -B and +B. ) .

For a stationary process X(¢) with spectral density Sy(f), ¥)]
define a new process by
Now
L (T
Y(r)=—f X(t-7)dr 1
BT, (n) frlfl<o==B ()
sin (nfT) ]2
1rfT therwi
where T = 1/2B. Then the spectral density of Y is 0, otherwise
s, () = s, ) <sm ;;T) ) So Eg. (2) implies that
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or

B - 2
f Sy (Ndf < (7) E(r? @) @

-B

Thus, the second moment of Y(¢) gives an estimate of the
amount of energy in X between frequencies -B and B.

For an application of this statistic, consider the process
X(#) which is +1 or -1 on each interval [nT,, (n+ 1) T,].
Assume the values on different intervals are independent and
have probability 1/2.

Then
1 (* :
EY* () =E Tf X(t)dt}
[
TO T/TO 2
=E 7 2, X(@-DTy)
n=1
T.\? T
(T o
0
and the bound is
B - 2
f S(Ndf < (5) 2BT, ©)
-B

Of course, for the process

Sy (

(sin(nTof))2
)= T

and for small B the energy between -B and B is 2BT,,. The
factor (m/2)? indicates the looseness of the bound.

The signal design problem is to encode the data into a signal
X(¢) such that E{Y?2(¢)} is small.

Il. Proposed Solution

The proposed solution is to expand the data stream by
inserting a redundant bit every LM bit, the value of the bit
being chosen to bring the total number of +1’s and ~1’s into
balance.

More precisely (see Figs. 1 and 2):
Let X, be a sequence of +1’s, defined below

Define X(r) = X, for t € [(n - 1) Ty, nT,]

n
Define C, = >, X _ (7
m=1
Let L be an even integer

Then X, is defined as follows: When 7 is not a multiple of L,
X,, is a data bit (£1). When n is a multiple of L, then

X, = -sgn[C,_,]

(Since L is even, n - 1 is odd. Then, from its definition, Coy
must be odd and cannot be zero.)

The derivation of a bound on the power between -B and B
is given below, resulting in Eq. (15). For non-redundant data
(flat random data) the amount of power is 2T B, so the factor
[ToB (372/8) L?] indicates what the gain has been when a
redundancy of 1/L has been inserted. In particular, when T, =
1/30 MHz and B = 1 kHz, if the value of L is 30, then the
factor is 1/8 or a gain of 9 dB. If L = 10, then the gain is
18.5dB.

lll. Analysis

It is clear from the definitions that, when T/T, is an
integer,

Y (nTy)= (Cn - Cn-T/To )ZT(1

Therefore, the second moments of {C, } must be studied. We
will assume n so large that the stationary distributions have
been obtained so that

= 2
E {C}= E{ cn_T/TO}

In the case that the data bits are independent it can be shown
that

E{ €,y Coryr, }>0

From this we have
T2
E {Y*(nT,)}I<—E{C?} (8)
T? "
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To analyze C, , let
KL+L-1

Zk = :E: X;

n=kL+1

That is, Z, is the sum of L - 1 consecutive data bits. For most
of the analysis we will assume only that the odd moments of
Z, are O, but for the best result we must also assume that the
X, contributing to Z, are mutually independent.

From the definition of X,, we have

Xprnyy = 80 (G 2, ©)

and

C(k+1)L = CkL +Z, - sgn [CkL +Z

R
Multiplying through by sgn [C;; + Z,] gives

Cornyr 81 [Cy T 2,1 = Gy + 2,1~ 1 (10)

Since subtracting 1 from a positive odd integer cannot change
the sign, the left side of Eq. (10) must be non-negative, and we
have )

IC

eyt = G 2, an

Next define
w = E{Z}}
and

M, = E{IC,, 1}

Then from Eq. (11) and the assumption that u, =0 for odd &,
we get

M, +2M +1 = M, +u,

My +aM +6M, +4M +1 = M, +6M, u, +p, (12)
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From these equations and the Swartz inequality for positive
random variables M, M, > M3, the following inequality can be
derived:

[M2 —%(,12 - 1)2] 2 <

He=4 py,-1
-1 - Z - 3
s, )[ 8§ 4 ‘el 1)]
or

3
My <5 (- 1)?

#3518, - 167 160, +9(s, - 1)°]  (13)

When the data bits are independent, M, = L-2,and Eq.
(13) implies

3 .2
M, <=L (14)

This combined with Egs. (4) and (8) give

B 7\ 2 2 3
f S, (Ndf < (5) (2TOB) 251

-B

- (2TOB) 2 [38—"2 L2]

or

B 372
f Sy (F)df < 2T,B [TOB 5 L2] (15)
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Fig. 1. Frame layout for data and redundant bit
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Fig. 2. Circuit for redundant bit computation and insertion



